USE OF ARTIFICIAL INTELLIGENCE IN THE MANAGEMENT OF SEPSIS
a review of the literature
DOI:
https://doi.org/10.36557/pbpc.v3i1.29Keywords:
Sepsis, Artificial intelligence, Clinical Decision Support SystemsAbstract
Introduction: Sepsis is characterized as a fatal organic dysfunction, resulting from the body's unregulated response to an infection. Its early detection contributes to advanced stages for patients. Artificial intelligence is a system that emulates human intelligence and can help manage this condition. Objective: to analyze the use of artificial intelligence in the management of sepsis. Methodology: this is a narrative review of the literature, operationalized through the Health Sciences Descriptors: “Artificial Intelligence” and “Sepsis”, connected by the Boolean operator “AND”. Results and discussion: after applying the inclusion and exclusion criteria, 12 articles were selected to compose this study. Note that sepsis management is related to the continuous analysis of patients' physiological data, such as mandatory signals, translating into algorithms that provide identify patterns and characteristics of their data, allowing early detection of sepsis even before laboratory results are available. . Furthermore, such management is related to the decline in mortality. Conclusion: this literature review elucidated that the use of artificial intelligence in the management of sepsis stands out as an innovative and effective approach.
Downloads
References
ILAS. Instituto Latino Americano de Sepse. Sepse 3.0. São Paulo: ILAS, 2022. Disponível em: https://ilas.org.br/sepse-3-0/. Acesso em: 23 maio 2024.
LIU, Yan-Cun et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. Bmc Infectious Diseases, Washington, v. 22, n. 1, p. 1-12, 21 jun. 2022. Http://dx.doi.org/10.1186/s12879-022-07543-8.
LIN, Tianlai et al. A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients. Bmc Medical Informatics And Decision Making, Berlim, v. 23, n. 1, p. 1-12, maio 2023. Http://dx.doi.org/10.1186/s12911-023-02175-7.
LEMAńSKA-PEREK, Anna et al. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells, Basel, v. 11, n. 15, p. 2433, ago. 2022. Http://dx.doi.org/10.3390/cells11152433.
FUCHS, Antonio. Sepse: a maior causa de morte nas UTIs. Fundação Oswaldo Cruz, 2021. Disponível em: <https://portal.fiocruz.br/noticia/sepse-maior-causa-de-morte-nas-utis>. Acesso em: 23 maio 2024.
GRITTE, Raquel Bragante et al. Why Septic Patients Remain Sick After Hospital Discharge? Frontiers In Immunology, Hopkings, v. 111, n. 2, p. 1-8, 15 fev. 2021. Http://dx.doi.org/10.3389/fimmu.2020.605666.
MOLLURA, Maximiliano et al. A novel artificial intelligence based intensive care unit monitoring system: using physiological waveforms to identify sepsis. Philosophical Transactions Of The Royal Society A: Mathematical, Physical and Engineering Sciences, Londres, v. 379, n. 2212, p. 1-19, out. 2021. Http://dx.doi.org/10.1098/rsta.2020.0252.
YAN, Melissa; GUSTAD, Lise Tuset; NYTRO, Oystein. Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review. Journal Of The American Medical Informatics Association, Oxford, v. 29, n. 3, p. 559-575, dez. 2021. Http://dx.doi.org/10.1093/jamia/ocab236.
RIVERS, Emanuel et al. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. New England Journal Of Medicine, Massachusetts, v. 345, n. 19, p. 1368-1377, nov. 2001. Http://dx.doi.org/10.1056/nejmoa010307.
ROTHER, Edna Terezinha. Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, São Paulo, v. 20, n. 2, p. 5-6, jun. 2007. Http://dx.doi.org/10.1590/s0103-21002007000200001.
GONÇALVES, Luciana Schleder et al. Implementation of an Artificial Intelligence Algorithm for sepsis detection. Revista Brasileira de Enfermagem, Brasília, v. 73, n. 3, p. 1-5, maio 2020. Http://dx.doi.org/10.1590/0034-7167-2018-0421.
SCHERER, Juliane de Souza et al. Beyond technology: can artificial intelligence support clinical decisions in the prediction of sepsis?. Revista Brasileira de Enfermagem, Brasília, v. 75, n. 5, p. 1-7, 2022. Http://dx.doi.org/10.1590/0034-7167-2021-0586.
TANG, Ri et al. Artificial Intelligence in Intensive Care Medicine: bibliometric analysis. Journal Of Medical Internet Research, Toronto, v. 24, n. 11, p. 421-435, nov. 2022. Http://dx.doi.org/10.2196/42185.
XU, Leiming et al. Ultrasonic Image Features under the Intelligent Algorithm in the Diagnosis of Severe Sepsis Complicated with Renal Injury. Computational And Mathematical Methods In Medicine, Hindawi, v. 22, n. 4, p. 1-9, ago. 2022. Http://dx.doi.org/10.1155/2022/2310014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maria Eduarda Soares Frota, Dália Passos Sousa, Debora Cristina dos Santos Pereira, Mariana Monteiro Magalhães Cruz , Lorena Alves Silva Cruz

This work is licensed under a Creative Commons Attribution 4.0 International License.
Você tem o direito de:
- Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
- O licenciante não pode revogar estes direitos desde que você respeite os termos da licença.
De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas . Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.