USE OF ARTIFICIAL INTELLIGENCE IN THE MANAGEMENT OF SEPSIS

a review of the literature

Authors

  • Maria Eduarda Soares Frota Universidade Estadual do Piauí
  • Dália Passos Sousa Universidade do Estado de Mato Grosso
  • Debora Cristina dos Santos Pereira Universidade do Estado de Mato Grosso
  • Mariana Monteiro Magalhães Cruz Universidade Federal do Piauí
  • Lorena Alves Silva Cruz Universidade Federal do Delta do Parnaíba

DOI:

https://doi.org/10.36557/pbpc.v3i1.29

Keywords:

Sepsis, Artificial intelligence, Clinical Decision Support Systems

Abstract

Introduction: Sepsis is characterized as a fatal organic dysfunction, resulting from the body's unregulated response to an infection. Its early detection contributes to advanced stages for patients. Artificial intelligence is a system that emulates human intelligence and can help manage this condition. Objective: to analyze the use of artificial intelligence in the management of sepsis. Methodology: this is a narrative review of the literature, operationalized through the Health Sciences Descriptors: “Artificial Intelligence” and “Sepsis”, connected by the Boolean operator “AND”. Results and discussion: after applying the inclusion and exclusion criteria, 12 articles were selected to compose this study. Note that sepsis management is related to the continuous analysis of patients' physiological data, such as mandatory signals, translating into algorithms that provide identify patterns and characteristics of their data, allowing early detection of sepsis even before laboratory results are available. . Furthermore, such management is related to the decline in mortality. Conclusion: this literature review elucidated that the use of artificial intelligence in the management of sepsis stands out as an innovative and effective approach.

Downloads

Download data is not yet available.

References

ILAS. Instituto Latino Americano de Sepse. Sepse 3.0. São Paulo: ILAS, 2022. Disponível em: https://ilas.org.br/sepse-3-0/. Acesso em: 23 maio 2024.

LIU, Yan-Cun et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. Bmc Infectious Diseases, Washington, v. 22, n. 1, p. 1-12, 21 jun. 2022. Http://dx.doi.org/10.1186/s12879-022-07543-8.

LIN, Tianlai et al. A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients. Bmc Medical Informatics And Decision Making, Berlim, v. 23, n. 1, p. 1-12, maio 2023. Http://dx.doi.org/10.1186/s12911-023-02175-7.

LEMAńSKA-PEREK, Anna et al. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells, Basel, v. 11, n. 15, p. 2433, ago. 2022. Http://dx.doi.org/10.3390/cells11152433.

FUCHS, Antonio. Sepse: a maior causa de morte nas UTIs. Fundação Oswaldo Cruz, 2021. Disponível em: <https://portal.fiocruz.br/noticia/sepse-maior-causa-de-morte-nas-utis>. Acesso em: 23 maio 2024.

GRITTE, Raquel Bragante et al. Why Septic Patients Remain Sick After Hospital Discharge? Frontiers In Immunology, Hopkings, v. 111, n. 2, p. 1-8, 15 fev. 2021. Http://dx.doi.org/10.3389/fimmu.2020.605666.

MOLLURA, Maximiliano et al. A novel artificial intelligence based intensive care unit monitoring system: using physiological waveforms to identify sepsis. Philosophical Transactions Of The Royal Society A: Mathematical, Physical and Engineering Sciences, Londres, v. 379, n. 2212, p. 1-19, out. 2021. Http://dx.doi.org/10.1098/rsta.2020.0252.

YAN, Melissa; GUSTAD, Lise Tuset; NYTRO, Oystein. Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review. Journal Of The American Medical Informatics Association, Oxford, v. 29, n. 3, p. 559-575, dez. 2021. Http://dx.doi.org/10.1093/jamia/ocab236.

RIVERS, Emanuel et al. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. New England Journal Of Medicine, Massachusetts, v. 345, n. 19, p. 1368-1377, nov. 2001. Http://dx.doi.org/10.1056/nejmoa010307.

ROTHER, Edna Terezinha. Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, São Paulo, v. 20, n. 2, p. 5-6, jun. 2007. Http://dx.doi.org/10.1590/s0103-21002007000200001.

GONÇALVES, Luciana Schleder et al. Implementation of an Artificial Intelligence Algorithm for sepsis detection. Revista Brasileira de Enfermagem, Brasília, v. 73, n. 3, p. 1-5, maio 2020. Http://dx.doi.org/10.1590/0034-7167-2018-0421.

SCHERER, Juliane de Souza et al. Beyond technology: can artificial intelligence support clinical decisions in the prediction of sepsis?. Revista Brasileira de Enfermagem, Brasília, v. 75, n. 5, p. 1-7, 2022. Http://dx.doi.org/10.1590/0034-7167-2021-0586.

TANG, Ri et al. Artificial Intelligence in Intensive Care Medicine: bibliometric analysis. Journal Of Medical Internet Research, Toronto, v. 24, n. 11, p. 421-435, nov. 2022. Http://dx.doi.org/10.2196/42185.

XU, Leiming et al. Ultrasonic Image Features under the Intelligent Algorithm in the Diagnosis of Severe Sepsis Complicated with Renal Injury. Computational And Mathematical Methods In Medicine, Hindawi, v. 22, n. 4, p. 1-9, ago. 2022. Http://dx.doi.org/10.1155/2022/2310014.

Published

2024-06-01

How to Cite

SOARES FROTA, Maria Eduarda; PASSOS SOUSA, Dália; DOS SANTOS PEREIRA, Debora Cristina; MONTEIRO MAGALHÃES CRUZ , Mariana; ALVES SILVA CRUZ, Lorena. USE OF ARTIFICIAL INTELLIGENCE IN THE MANAGEMENT OF SEPSIS: a review of the literature. Periódicos Brasil. Pesquisa Científica, Macapá, Brasil, v. 3, n. 1, p. 211–221, 2024. DOI: 10.36557/pbpc.v3i1.29. Disponível em: https://periodicosbrasil.emnuvens.com.br/revista/article/view/29. Acesso em: 27 sep. 2025.

Issue

Section

Ciências da Saúde